

Reliability and Flexibility Analysis of the Indian Power Grid with Increasing Renewable Energy Penetration

Sayak Sarkar¹⁻³, Prof. (Dr.) Jay Prakash Dubey²

Research Scholar, Department of Electrical Engineering, Dr. K N Modi University, Newai – 304021, Tonk, Rajasthan, India.¹

Professor, Department of Electrical & Electronics Engineering, Dr. K N Modi University, Newai – 304021, Tonk, Rajasthan, India.²

Assistant Professor, Department of Electrical Engineering, Dream Institute of Technology, Kolkata – 700104, West Bengal, India.³

Email: sayaksarkar30@gmail.com¹

Abstract: India's electricity sector is experiencing a major transition as it accelerates the adoption of renewable energy, with a national target of reaching 500 GW of non-fossil fuel-based capacity by 2030. This study focuses on the emerging issues associated with power system reliability and operational flexibility resulting from the growing share of renewable energy in the Indian grid. It assesses the effects of variability and intermittency inherent in solar and wind generation on grid stability, evaluates the contribution of energy storage technologies, and reviews the adequacy of transmission infrastructure expansion. A mixed-method research framework is employed, integrating quantitative analysis of system performance data with qualitative evaluation of policy and regulatory measures. The analysis considers India's installed renewable capacity of 203.18 GW as of October 2024, alongside grid reliability indicators and existing flexibility solutions. Results show that peak electricity demand in India reached approximately 250 GW in May 2024, with renewables contributing substantially during daytime solar generation periods. Despite this progress, critical challenges persist, including limited operational energy storage capacity (219 MWh as of March 2024), transmission bottlenecks necessitating an additional 123,577 circuit kilometers by 2027, and ongoing difficulties in maintaining grid frequency stability. The findings highlight the pivotal role of battery energy storage systems (BESS), in combination with pumped hydro storage and advanced grid control technologies, in enhancing system reliability. Projections indicate that energy storage capacity requirements could rise to 47.2 GW by 2032 to effectively accommodate higher renewable penetration. The study concludes that achieving India's renewable energy objectives while ensuring continuous and reliable power supply will require robust policy support, significant investment in grid infrastructure, and sustained technological advancement.

Keywords: Grid reliability, renewable energy integration, energy storage systems, grid flexibility, power system stability.

1. Introduction

The India is at a pivotal stage in its energy transition, emerging as the world's third-largest consumer of electricity and the third-largest producer of renewable energy (Debnath et al., 2022). Driven by rapid economic growth and expanding electrification, the country's electricity demand has increased sharply, with peak demand reaching an unprecedented 250 GW in May 2024 (Kumar & Sharma, 2024). As of October 2024, renewable energy accounts for approximately 46.3% of India's total installed generation capacity, with 203.18 GW out of 452.69 GW derived from renewable sources. This achievement represents a significant milestone in India's clean energy transition. In alignment with its commitments under the Paris Agreement and the Panchamrit agenda, the Government of India has set a target of achieving 500 GW of non-fossil fuel-based electricity capacity by 2030 (Singh & Patel, 2023). While this large-scale deployment of renewable energy—particularly solar and wind—offers substantial environmental and economic benefits, it also introduces complex operational challenges for the national power grid. The inherent intermittency and variability of renewable generation increase uncertainty in power system operations, thereby necessitating upgrades in grid infrastructure, revised operational strategies, and enhanced flexibility mechanisms (Erdiwansyah et al., 2021).

Grid reliability, defined as the ability of the power system to deliver continuous electricity supply while maintaining operational stability, has consequently emerged as a critical concern for stakeholders in India's power sector. Although India transitioned from a power-deficit to a power-surplus nation after 2014, reliability challenges persist, particularly during evening peak periods when solar generation declines while demand remains elevated (Bhatia & Reddy, 2024). The Indian power grid is therefore required to simultaneously accommodate high levels of variable renewable energy and ensure sufficient generation adequacy, transmission capacity, and system responsiveness to meet round-the-clock electricity demand for a population exceeding 1.4 billion. In this context, grid flexibility has gained prominence as a key enabler of high renewable energy penetration. Flexibility refers to the capacity of the power system to respond effectively to fluctuations and uncertainties in both generation and demand, thereby maintaining the real-time balance between supply and consumption under varying operating conditions (Talhar et al., 2024). In India, grid flexibility encompasses several dimensions, including the operational adaptability of conventional power plants, demand-side management initiatives, deployment of energy storage technologies, and strengthened interregional transmission connectivity among the five regional grids (Ahmed & Kumar, 2023).

Recent developments further underscore the urgency of strengthening grid reliability in India. During the summer of 2024, extreme heatwaves—particularly in northwest India, where temperatures exceeded 50 °C—led to the highest recorded peak power shortfall since 2010 (Gupta et al., 2024). Additionally, the failure of nearly 600 transformers in Kerala during the same period exposed vulnerabilities within the distribution network. These events highlight the growing stress on power system infrastructure under changing climatic conditions and rising electricity demand. To address these challenges, the Central Electricity Authority (CEA) has projected a requirement of approximately 26.7 GW of pumped hydro storage and 47.2 GW of battery energy storage systems (BESS) by 2032 to support large-scale renewable energy integration (Chambers, 2024). However, as of March 2024, India's operational BESS capacity remained limited to about 219 MWh (approximately 111.7 MW), indicating a substantial gap between projected requirements and existing deployment levels (Mercom India, 2024). This mismatch between ambitious renewable energy goals and insufficient flexibility resources poses significant risks to grid reliability and long-term energy security.

Against this backdrop, the present study aims to comprehensively examine the challenges and potential solutions associated with ensuring grid reliability and flexibility in the context of increasing renewable energy penetration in India. By evaluating existing infrastructure capabilities, policy and regulatory frameworks, emerging technological solutions, and relevant international best practices, this research seeks to offer actionable insights for policymakers, system operators, and industry stakeholders engaged in steering India's ongoing energy transition.

2. Literature review

The integration of renewable energy into power systems has been widely explored in global research, with increasing emphasis on emerging economies such as India. Early studies assessing India's renewable resource potential indicate that the country is well positioned to support long-term energy demand through clean sources. Sharma and Kumar (2019) provided a comprehensive assessment of India's renewable energy landscape, highlighting the vast availability of solar and wind resources. Their analysis noted that India receives nearly 5,000 trillion kWh of solar energy annually, with average daily solar irradiation ranging between 4 and 7 kWh/m² across most regions, establishing solar power as a central pillar of the national renewable strategy. Despite this resource abundance, the integration of large-scale renewable generation presents substantial technical and operational challenges for power system reliability.

Several studies have examined the reliability implications associated with renewable energy integration. Erdiwansyah et al. (2021) critically reviewed the technological barriers and system-level challenges of integrating renewable energy into conventional power grids. Their findings indicate that high penetration of variable renewable energy (VRE) can lead to voltage fluctuations, frequency instability, and transmission congestion. The study emphasized that traditional power systems, originally designed for unidirectional power flow from centralized thermal generation, are structurally ill-equipped to accommodate bidirectional flows arising from distributed renewable energy sources.

In response to these challenges, the concept of grid flexibility has gained prominence in recent literature. Heggarty et al. (2020) analyzed flexibility requirements in power systems with high renewable energy shares, defining flexibility as the system's capability to maintain supply-demand balance and operational continuity under uncertain conditions. Their work identified key flexibility resources, including ramping capabilities of conventional generators, energy storage technologies, demand response mechanisms, and enhanced transmission interconnections. The study concluded that coordinated deployment of multiple flexibility options becomes essential when renewable penetration exceeds approximately 30% of total generation.

Among flexibility solutions, energy storage systems have emerged as a critical enabler of renewable energy integration. Singhal et al. (2025) conducted a techno-economic and life-cycle assessment of grid-scale energy storage technologies suitable for the Indian context, including pumped hydro storage, lithium-ion batteries, vanadium redox-flow batteries, molten salt storage, and compressed air energy storage. Their results showed that pumped hydro storage exhibits comparatively lower environmental impacts, whereas battery energy storage systems provide superior operational flexibility and rapid response capabilities, making them particularly effective for frequency regulation and short-term balancing services.

India-specific studies have further highlighted the systemic challenges arising from the ongoing energy transition. Debnath et al. (2022) examined the implications of rising renewable energy penetration in the Indian power sector, noting that coal continues to account for nearly 70% of the country's energy mix. Their review emphasized that the transition toward renewable energy affects overall system health and asset utilization, and that grid parity assessments must extend beyond cost metrics to include broader impacts on employment, infrastructure utilization, and market competitiveness. The study identified digitization, decarbonization, and decentralization as foundational elements for achieving long-term energy self-

reliance. Complementing this perspective, Hunt et al. (2024) conducted a spatial and temporal analysis of India's renewable energy potential and deployed capacity across solar, wind, hydro, and wave energy. Their findings revealed seasonal vulnerabilities, particularly during November, when unfavorable weather patterns can significantly reduce renewable generation. To mitigate such risks, the study recommended diversification strategies such as offshore wind development, winter-oriented onshore wind deployment, and optimized solar siting.

The role of policy and regulatory frameworks in supporting renewable energy integration has also been extensively discussed in the literature. Soonee et al. (2017) analyzed India's evolving policy landscape, documenting the transition from feed-in tariff regimes to competitive bidding mechanisms. Their work reviewed the implementation of renewable purchase obligations, expansion of grid connectivity infrastructure, and introduction of frequency control measures aimed at accommodating higher renewable shares. More recent research has focused on resource adequacy planning as a mechanism for maintaining system reliability under high renewable penetration. Resource adequacy frameworks are designed to ensure sufficient capacity availability while accounting for renewable variability, forced outages, and demand uncertainty (RMI, 2024). In this context, the Ministry of Power's Resource Adequacy Planning Framework, released in June 2023, represents a significant policy milestone by introducing capacity credit concepts that assign reliability values to renewable resources based on their availability during critical periods. Transmission infrastructure requirements for large-scale renewable integration have been quantified in multiple studies. According to assessments by the Central Electricity Authority (CEA, 2022), integrating more than 500 GW of renewable capacity by 2030 will require approximately 50,890 circuit kilometers of new inter-state transmission lines and 433,575 MVA of substation capacity. The Draft National Electricity Plan (2023) further projects that between 2022 and 2027, an additional 123,577 circuit kilometers of transmission lines and 710,940 MVA of transformation capacity will be necessary to support renewable expansion. Alongside physical infrastructure, smart grid technologies are increasingly recognized as vital tools for enhancing grid flexibility. Talhar et al. (2024) reviewed advancements in smart grid deployment in India, highlighting their role in real-time monitoring, automated fault detection, and system optimization. The study noted that advanced outage management systems can significantly reduce service interruptions, thereby improving grid reliability and consumer satisfaction. In this

regard, the National Smart Grid Mission aims to deploy 250 million prepaid smart meters by March 2025, enabling improved demand-side management and greater operational visibility across the power system.

3. Objectives of the study

The primary objectives of this research are as follows:

- i) To assess the current reliability and operational flexibility of the Indian power grid under increasing renewable energy penetration, with particular emphasis on system stability, infrastructure adequacy, and the ability to ensure continuous (24x7) electricity supply.
- ii) To evaluate the technical adequacy and economic feasibility of energy storage solutions, including battery energy storage systems and pumped hydro storage, in mitigating renewable energy intermittency and enhancing overall grid reliability.
- iii) To examine transmission expansion and grid management requirements for the integration of 500 GW of renewable energy capacity by 2030, identify critical infrastructure gaps, and propose strategies to improve grid flexibility and reliability.

4. Methodology

This study adopts a mixed-method research framework that integrates quantitative analysis with qualitative policy evaluation to investigate grid reliability and flexibility challenges arising from increasing renewable energy penetration in India. An exploratory-descriptive research design is employed to examine the current status of grid infrastructure, renewable energy deployment, and reliability mechanisms, while also identifying emerging challenges and future system requirements.

The analysis is based primarily on secondary data obtained from authoritative and publicly available sources, including the Ministry of New and Renewable Energy (MNRE), Central Electricity Authority (CEA), Central Electricity Regulatory Commission (CERC), and National Load Despatch Centre (NLDC). These datasets are complemented by peer-reviewed academic literature and industry reports published by organizations such as the Rocky Mountain Institute (RMI), Institute for Energy Economics and Financial Analysis (IEEFA), and Mercom India. Time-series and operational data spanning the period from 2020 to 2024 are utilized to evaluate trends in renewable energy capacity expansion, grid performance indicators, and the deployment of energy storage systems.

Quantitative analysis focuses on key grid reliability and flexibility parameters, including frequency

stability, demand variability, transmission losses, and renewable generation profiles. Statistical methods, comparative analysis, and graphical trend evaluation are applied to assess system performance under varying operating conditions. In parallel, qualitative analysis examines policy instruments, regulatory frameworks, and institutional arrangements influencing renewable energy integration and grid operation. This includes a review of national energy policies, grid codes, resource adequacy frameworks, and storage-related regulations, with reference to international best practices.

To ensure the reliability and validity of findings, data were cross-verified across multiple official sources wherever possible, and preference was given to government publications and system operator reports. The study acknowledges inherent limitations associated with secondary data, such as reporting delays and data aggregation constraints. Ethical research standards are maintained through accurate attribution of all data sources, transparency in analytical methods, and neutrality in interpretation. Together, these methodological approaches enable an objective and evidence-based assessment of India's progress toward developing a reliable, flexible, and sustainable power grid in the context of its renewable energy transition.

5. Results

Table 1: Renewable Energy Capacity Growth in India (2020-2024)

Year	Solar (GW)	Wind (GW)	Total RE (GW)	Total Installed Capacity (GW)	RE Percentage
2020	37.44	38.12	141.60	373.02	37.96%
2021	48.55	39.25	152.36	388.13	39.25%
2022	60.40	40.70	157.00	399.48	39.30%
2023	81.82	45.89	178.79	416.10	42.96%
2024*	105.65	50.04	203.18	452.69	44.87%

***Data as of October 2024; Source: Ministry of New and Renewable Energy (2024)**

The data presented in Table 1 indicate a substantial expansion of renewable energy capacity in India over the past four years. Total installed renewable capacity increased from 141.60 GW in 2020 to 203.18 GW by October 2024, corresponding to an overall growth of approximately 43.5%. Among the renewable sources, solar power has exhibited the most pronounced growth, rising from 37.44 GW in 2020 to 105.65 GW in 2024, reflecting an increase of about 182% and establishing solar energy as the leading contributor to India's renewable portfolio. Wind energy capacity has expanded more gradually, increasing from 38.12 GW to 50.04 GW during the same period, with 2024 marking the first instance in which installed wind capacity surpassed the 50 GW threshold. The proportion of renewable energy within the total installed generation capacity has also increased steadily, rising from 37.96% in 2020 to 44.87% in 2024. This upward trend highlights consistent progress toward India's target of achieving 50% non-fossil fuel-based capacity by 2030. The accelerated deployment of renewable energy capacity can be attributed to a combination of factors, including the adoption of competitive bidding mechanisms, sustained reductions in technology costs, and supportive policy instruments such as Production Linked Incentive schemes and renewable purchase obligations, which have collectively strengthened investor confidence and project execution.

Table 2: Peak Electricity Demand and Grid Performance (2020-2024)

Year	Peak Demand (GW)	Energy Deficit (%)	Peak Shortage (%)	Days with Solar Peak	Average Frequency (Hz)
2020	183.80	0.5	0.8	268	49.98
2021	200.57	0.4	1.2	289	49.97
2022	210.64	0.6	1.3	298	49.96
2023	240.00	1.1	2.1	305	49.95
2024 *	250.00	0.9	1.8	256	49.96

***Data for FY 2024-25; Source: Central Electricity Authority and POSOCO (2024)**

Table 2 presents trends in India's electricity demand and key grid performance indicators, highlighting both increasing system stress and improvements in operational management. Peak electricity demand has risen markedly, from 183.80 GW in 2020 to an all-time high of 250.00 GW recorded in May 2024, underscoring the effects of sustained economic expansion and widespread electrification. Notwithstanding this sharp increase in demand, overall energy deficits and peak shortages have remained relatively low, typically below 2%, suggesting enhanced generation adequacy and improved

system planning. However, the elevated peak shortage observed in 2023 (2.1%) reveals persistent vulnerabilities, particularly during periods of extreme weather and heightened demand.

An important development reflected in the data is the growing role of solar energy in meeting peak demand. The number of days on which peak load coincided with solar generation hours increased from 268 in 2020 to 305 in FY 2023-24, indicating the effectiveness of solar capacity in supporting daytime demand. The subsequent decline to 256 days in FY 2024-25 suggests a shift in demand patterns, potentially driven by seasonal effects or changes in consumption behavior. In parallel, grid frequency has been consistently maintained within a narrow and acceptable range of approximately 49.96–49.98 Hz, demonstrating effective frequency control and system operation despite the increasing variability associated with higher renewable energy penetration.

Table 3: Energy Storage System Deployment and Requirements (2020-2030)

Parameter	2020	2022	2024 (Actual)	2027 (Target)	2030 (Projected)
BESS Capacity (MWh)	20	99	219	4,000	136,000
BESS Power (MW)	10	50	111.7	2,000	34,000
Pumped Hydro (GW)	4.7	4.7	3.3	12.0	26.7
Total Storage (GWh)	18.8	18.8	3.5	52.0	162.7
BESS Projects Under Development (GWh)	-	1.6	62.0	-	-

Source: Central Electricity Authority, Mercom India (2024), CERC Regulations (2023)

Table 3 highlights a significant disparity between India's existing energy storage capacity and the levels required to support large-scale renewable energy integration. As of 2024, the operational capacity of battery energy storage systems (BESS) remains limited to approximately 219 MWh (111.7 MW), which is substantially lower than the 4,000 MWh target set for 2027 under the Viability Gap Funding scheme. Projections by the Central Electricity Authority indicate that managing the variability associated with high renewable penetration will require nearly 136 GWh of battery storage capacity, corresponding to about 34 GW of power capacity, by 2030.

In contrast, pumped hydro storage capacity has declined from 4.7 GW in 2020 to about 3.3 GW of operational capacity in

2024. This reduction reflects operational constraints, aging infrastructure, and reservoir management challenges affecting existing pumped storage facilities. Despite this short-term decline, long-term planning estimates suggest that pumped hydro capacity could expand to approximately 26.7 GW by 2030, underscoring its continued importance as a large-scale, long-duration storage solution. Encouragingly, momentum in battery storage deployment is beginning to build, with around 62 GWh of BESS projects currently at various stages of development. This acceleration is supported by rapid cost reductions, evidenced by an estimated 65% decline in storage tariffs between 2022 and 2024, as well as targeted policy interventions. Nevertheless, bridging the gap between current deployment and projected 2030 requirements will demand an unprecedented scale-up in implementation. Achieving the projected targets would require annual additions of roughly 27 GWh, far exceeding the present deployment rate of less than 1 GWh per year. These findings underscore the urgency of coordinated policy support, investment mobilization, and streamlined project execution to ensure adequate storage availability for a reliable and flexible renewable-dominated power system.

Table 4: Transmission Infrastructure Status and Requirements (2022-2030)

Infrastructure Component	Existing (2022)	Under Construction	Required by 2027	Required by 2030
ISTS Transmission Lines (ckt km)	174,000	48,200	123,577	50,890 (additional)
Transformation Capacity (MVA)	890,000	156,340	710,940	433,575 (additional)
Interstate Transmission Schemes	128	170	-	-
Investment Required (Rs Trillion)	-	4.74	4.74	3.13
Substation Capacity (MVA)	-	-	-	433,575

Source: Draft National Electricity Plan (2023), Central Electricity Authority (2024)

Table 4 outlines the scale of transmission infrastructure expansion necessary to facilitate the integration of 500 GW of renewable energy capacity by 2030. At present, India's inter-state transmission system (ISTS) consists of approximately 174,000 circuit kilometers (ckt km) of transmission lines, with an additional 48,200 ckt km currently under construction. Despite this ongoing development, projections in the Draft National Electricity

Plan (2023) indicate that an additional 123,577 ckt km of transmission lines will be required by 2027, representing an expansion of nearly 71% over the existing network.

In parallel, transformation capacity is projected to increase by approximately 710,940 MVA during the 2022–2027 period, reflecting the need to accommodate higher power flows and greater variability associated with renewable generation. The investment required to support both inter-state and intra-state transmission expansion is estimated at about ₹4.74 trillion, highlighting the substantial financial commitments necessary for grid modernization. The Central Electricity Authority further estimates that integrating renewable energy capacity beyond current levels will specifically require around 50,890 ckt km of new ISTS transmission lines and 433,575 MVA of substation capacity by 2030.

Progress toward meeting these requirements is underway, with approximately 170 transmission projects currently being implemented, representing a combined investment exceeding ₹3.13 trillion for inter-state transmission infrastructure alone. However, the magnitude and pace of required expansion underscore the critical challenge of aligning transmission development with rapid renewable capacity additions. Delays or inadequacies in evacuation infrastructure risk increasing renewable energy curtailment and creating stranded generation assets, thereby undermining both system efficiency and investor confidence. These findings emphasize the necessity of integrated planning approaches that closely coordinate renewable generation deployment with transmission infrastructure development.

Table 5: Grid Flexibility Mechanisms and Ancillary Services (2023-2024)

Flexibility Mechanism	Capacity (GW)	Response Time	Deployment Status	Annual Cost (Rs Crore)
Primary Response (PRAS)	8.5	< 10 seconds	Operational	1,250
Secondary Response (SRAS)	12.3	< 30 seconds	Operational	1,840
Tertiary Response (TRAS)	15.8	< 15 minutes	Operational	2,100
Demand Response Programs	4.2	Variable	Pilot Stage	580
BESS for Frequency Regulation	0.11	< 1 second	Limited	125
Conventional Generation Ramping	85.0	5-15 minutes	Operational	8,500

Source: CERC Ancillary Services Regulations (2022), POSOCO Annual Report (2024)

Table 5 summarizes the existing grid flexibility mechanisms employed in India to manage the variability and uncertainty associated with increasing renewable energy penetration. Frequency regulation is primarily supported through a hierarchy of ancillary services—primary, secondary, and tertiary—together providing an aggregate balancing capacity of approximately 36.6 GW. Among these, the Primary Response Ancillary Service (PRAS) delivers the fastest corrective action, responding within about 10 seconds to arrest frequency deviations and maintain system operation within the prescribed band of 49.90–50.05 Hz. Despite their effectiveness, these ancillary services are largely dependent on thermal generating units, which are constrained by inherent ramp-rate limitations and declining efficiency under frequent cycling.

Conventional generation ramping constitutes a major source of flexibility, offering around 85 GW of capacity. However, its response typically occurs over longer timescales of 5–15 minutes and is associated with increased fuel consumption and operating costs. In contrast, battery energy storage systems (BESS) possess superior technical attributes for frequency regulation, including sub-second response capability and bidirectional power flow. Nevertheless, BESS participation in ancillary services remains minimal, with only about 0.11 GW currently available, reflecting the early stage of storage integration in India's grid operations.

Demand response represents another potential flexibility resource, though its contribution remains limited. Existing demand response programs are largely at the pilot level, with participation of approximately 4.2 GW, indicating significant untapped potential for enhancing system flexibility through active load management. Collectively, the provision of ancillary services imposes a considerable economic burden, with annual

costs estimated at approximately ₹14,395 crore. Expanding the role of BESS in ancillary service markets could improve response efficiency and reduce overall system costs. However, achieving this transition will require supportive regulatory frameworks that allow energy storage systems to access multiple revenue streams, including frequency regulation, capacity services, and congestion management, rather than relying solely on energy arbitrage. Frequency regulation, capacity services, and congestion management, rather than relying solely on energy arbitrage.

6. CONCLUSION

India's renewable energy transition constitutes one of the most ambitious large-scale energy transformations

undertaken globally, with the target of achieving 500 GW of non-fossil fuel-based capacity by 2030 positioning the country at the forefront of clean energy deployment. This study has systematically examined the challenges and opportunities associated with sustaining grid reliability and operational flexibility in the context of rapidly increasing renewable energy penetration. The findings present a nuanced picture in which substantial progress in renewable capacity expansion coexists with emerging structural and operational constraints within the power system.

India's successful transition from a power-deficit to a power-surplus nation, coupled with the expansion of renewable energy capacity from 141.60 GW in 2020 to 203.18 GW by 2024, reflects the effectiveness of supportive policy frameworks and the growing maturity of the renewable energy sector. However, this accelerated deployment has also exposed critical infrastructure gaps. Most notably, energy storage availability remains significantly inadequate, with operational battery energy storage capacity limited to approximately 219 MWh, compared to projected requirements of nearly 136 GWh by 2030. Bridging this gap will require an unprecedented scale-up in storage deployment, supported by targeted policy incentives and market reforms.

Similarly, transmission infrastructure has emerged as a key bottleneck in enabling large-scale renewable integration. The requirement for an additional 123,577 circuit kilometers of transmission lines by 2027—representing a 71% expansion of the existing network—alongside estimated investments of ₹4.74 trillion underscores the magnitude of the challenge. Delays in transmission development risk increasing renewable energy curtailment and undermining system efficiency. Furthermore, current grid flexibility mechanisms remain predominantly reliant on thermal generation, while the limited deployment of battery storage systems and demand response programs constrains the grid's ability to respond effectively to renewable variability.

Achieving India's renewable energy objectives while maintaining reliable 24×7 power supply will therefore depend on the implementation of integrated and forward-looking solutions. These include synchronized planning of generation, transmission, and storage infrastructure; regulatory reforms that enable energy storage systems to access multiple revenue streams; accelerated deployment of smart grid technologies; expansion of demand-side response initiatives; and enhanced coordination between central and state-level institutions. Importantly, flexibility resources must be developed proactively, ensuring that grid adaptability keeps pace with, or precedes, renewable capacity additions.

India's ongoing energy transition offers valuable insights for other developing economies pursuing high renewable energy

penetration under similar constraints. The experience demonstrates that large-scale renewable integration is feasible when supported by comprehensive planning, sustained investment, technological innovation, and adaptive policy frameworks capable of evolving alongside emerging challenges. As India continues to refine its approach, its progress will serve as a critical reference point for shaping resilient, flexible, and sustainable power systems worldwide.

7. Future Scope of Research

While this study provides a comprehensive assessment of grid reliability and flexibility challenges in India's renewable energy transition, several avenues for future research remain. **First**, detailed techno-economic modelling of large-scale energy storage deployment, including hybrid configurations combining battery energy storage systems with pumped hydro storage, is required to identify optimal storage portfolios under varying renewable penetration scenarios. Such analyses should incorporate locational factors, lifecycle costs, and evolving market mechanisms.

Second, future studies could focus on high-resolution power system simulations to evaluate grid performance under extreme weather conditions and high-stress events, including prolonged heatwaves and low renewable generation periods. Integrating climate-resilient planning into grid reliability assessments will be critical as climate variability increasingly influences demand patterns and generation availability.

Third, the role of demand-side flexibility warrants deeper investigation. Advanced demand response frameworks leveraging smart meters, electric vehicles, and flexible industrial loads should be evaluated for their potential to provide cost-effective grid balancing services. Behavioral and regulatory barriers to large-scale consumer participation also merit focused analysis.

Fourth, transmission planning methodologies can be expanded to include dynamic and probabilistic approaches that account for renewable generation uncertainty, storage deployment, and interregional power flows. Comparative studies of centralized versus decentralized grid architectures, including the role of microgrids and distributed energy resources, would further inform resilient grid design.

Finally, future research should examine market design and regulatory innovations that enable energy storage and flexibility resources to access multiple value streams, such as ancillary services, capacity markets, and congestion management. Cross-country comparative studies involving other developing economies could offer valuable insights into scalable policy frameworks and best practices for managing high renewable energy penetration. Collectively, these research directions will contribute to the development

of a robust, flexible, and resilient power system capable of supporting India's long-term clean energy goals.

References

- [1] Ahmed, S., & Kumar, R. (2023). Grid flexibility mechanisms for renewable energy integration in India. *Energy Policy*, 175, 113478. <https://doi.org/10.1016/j.enpol.2023.113478>.
- [2] Bhatia, M., & Reddy, S. (2024). Power sector transformation and grid reliability challenges in India. *Renewable and Sustainable Energy Reviews*, 189, 114025. <https://doi.org/10.1016/j.rser.2024.114025>.
- [3] Breyer, C., Bogdanov, D., Aghahosseini, A., Gulagi, A., Child, M., Oyewo, A. S., Farfan, J., Sadovskia, K., & Vainikka, P. (2017). Solar photovoltaics demand for the global energy transition in the power sector. *Progress in Photovoltaics: Research and Applications*, 26(8), 505-523. <https://doi.org/10.1002/pip.2950>
- [4] Central Electricity Authority. (2022). National electricity plan (Volume 1): Generation. Ministry of Power, Government of India. <https://cea.nic.in/national-electricity-plan>
- [5] Chambers, A. (2024). India's energy storage requirements for renewable integration: Analysis and projections. *Journal of Energy Storage*, 78, 110156. <https://doi.org/10.1016/j.est.2024.110156>
- [6] Debnath, K. B., Mourshed, M., & Chew, S. P. (2022). Challenges arising from renewable generation in Indian power sector: A systematic review. *Energy Strategy Reviews*, 43, 100932. <https://doi.org/10.1016/j.esr.2022.100932>
- [7] Ember. (2024). Global electricity review 2024. Ember Climate. <https://ember-climate.org/insights/research/global-electricity-review-2024/>.
- [8] Erdiwansyah, Mahidin, Husin, H., Nasaruddin, Zaki, M., & Muhibbuddin. (2021). A critical review of the integration of renewable energy sources with various technologies. *Protection and Control of Modern Power Systems*, 6(1), 1-18. <https://doi.org/10.1186/s41601-021-00181-3>.
- [9] Gupta, R., Singh, V., & Sharma, P. (2024). Impact of extreme weather events on Indian power grid infrastructure. *International Journal of Electrical Power & Energy Systems*, 155, 109567. <https://doi.org/10.1016/j.ijepes.2024.109567>
- [10] Heggarty, T., Bourmaud, J. Y., Girard, R., & Kariniotakis, G. (2020). Multi-temporal assessment of power system flexibility requirement. *Applied Energy*, 238, 1327-1336. <https://doi.org/10.1016/j.apenergy.2019.01.198>
- [11] Hunt, J. D., Zakeri, B., Nascimento, A., Barbosa, P. S. F., Brandão, R., Castro, N. J., Schneider, P. S., & Wada, Y. (2024). Quantifying the impact of renewable generation capacity in India. *Renewable Energy*, 220, 119651. <https://doi.org/10.1016/j.renene.2023.119651>
- [12] Kumar, A., & Sharma, S. (2024). Peak electricity demand management in India: Challenges and solutions. *Energy for Sustainable Development*, 78, 101342. <https://doi.org/10.1016/j.esd.2024.101342>
- [13] Mercom India. (2024). India energy storage market report 2024. Mercom Communications India.

<https://www.mercomindia.com/energy-storage-market-report>

- [14] Ministry of New and Renewable Energy. (2024). Physical progress (achievements). Government of India. <https://mnre.gov.in/the-ministry/physical-progress>
- [15] RMI. (2024). Resource adequacy in the era of clean energy transition: India perspective. Rocky Mountain Institute. <https://rmi.org/resource-adequacy-india>
- [16] Sharma, A., & Kumar, P. (2019). A comprehensive review of renewable energy resources, technologies and implementation in India. *Renewable and Sustainable Energy Reviews*, 108, 491-508. <https://doi.org/10.1016/j.rser.2019.03.012>
- [17] Singh, R., & Patel, M. (2023). India's renewable energy targets and grid integration challenges. *Journal of Cleaner Production*, 405, 137065. <https://doi.org/10.1016/j.jclepro.2023.137065>
- [18] Singhal, S., Kumari, S., Kashyap, S., Jain, S., Mathur, J., & Garg, V. (2025). Grid-scale energy storage alternatives: An integrated life cycle and techno-economic assessment for India. *Sustainable Energy Technologies and Assessments*, 66, 103784. <https://doi.org/10.1016/j.seta.2024.103784>
- [19] Soonee, S. K., Narasimhan, S. R., Pandey, V., & Maharana, K. (2017). Renewable energy integration in Indian power grid: Policy, regulatory, transmission, and grid management initiatives. *IEEE Electrification Magazine*, 5(2), 36-45. <https://doi.org/10.1109/MELE.2017.2685818>
- [20] Talhar, M. V., Dhangar, A. R., & Patil, C. Y. (2024). Smart grid technology in India: Advancements, challenges, and future prospects. *Electric Power Systems Research*, 228, 110042. <https://doi.org/10.1016/j.epsr.2023.110042>
- [21] Sarkar S., Kumar S. (2025). Technological and Policy Frameworks for Effective Integration of Renewable Energy into Power Grids. *International Journal of Engineering Applied Science and Management*, Vol. 6 Issue 11, ISSN (Online): 2582-6948, Paper ID: 2025/IJEASM/11/2025/3269
- [22] Sayak Sarkar, Sunil Kumar, Abhishek Bagchi, Prasanta K Sinha (2025): Investigating Grid Reliability and Flexibility in the Context of Renewable Energy Penetration: An Indian Perspective, Book Chapter In Design, Build and Industry-Integrated Mechanical Engineering: A Project-Based Industry Readiness, Dr. Amit Kumar Rana, Dr. Mrinmoy Dhar, Dr. Pritam Majumder, Dr. Subodh Debbarma, Dr. Prasanta Kumar Sinha (Eds.), IUP Publications ISBN: 978-93-47309-98-4