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Abstract: Early and accurate cancer detection is critical for patient outcomes. Advances in machine
learning (ML), especially deep learning and multimodal fusion, enable high-performance, scalable
detection systems that combine medical imaging, genomics, and clinical data. This paper presents a
modular ML framework for cancer detection and predictive analytics that (1) fuses multimodal inputs,
(2) leverages state-of-the-art deep architectures and gradient-boosted trees for tabular data, and (3)
provides uncertainty estimates for clinical use. We evaluate the system on three public benchmarks
covering imaging and genomics, compare single-modality and multimodal models, and demonstrate that
multimodal fusion yields consistent gains in AUC and sensitivity while calibrated uncertainty reduces
high-risk false positives. Our best model achieves AUCs of 0.96 (skin dermoscopy), 0.94 (breast
histopathology), and 0.92 (lung CT nodule malignancy probability) under cross-validation. We also
present an ablation of fusion strategies, calibration behavior, and a short analysis of deployment
considerations.
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probe model calibration and explainability—factors
essential for clinical translation.

(References for claims about prior work and multimodal
promise: [1]-[6].)

1. Introduction

Early detection is central to effective cancer therapy and
reduced mortality. Machine learning has achieved notable

successes in medical imaging and molecular diagnostics,
enabling automated screening and risk stratification [1], [2].
Multimodal approaches—combining imaging, genomic,
and clinical data—are increasingly showing improved
diagnostic and prognostic performance over single-
modality systems, particularly for complex cancers [3], [4].
However, clinical adoption requires robust performance
across cohorts, well-calibrated risk estimates, and
interpretability [5], [6].

This paper describes a reproducible ML pipeline and
experimental study that investigates how multimodal fusion
and predictive analytics improve detection performance and
reliability. We quantify gains across three public tasks and
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2. Related Work (brief)

Deep learning has become the dominant approach for
image-based cancer detection, showing expert-level
performance in dermatology, radiology, and histopathology
[1], [2]. Systematic reviews and recent surveys summarize
rapid progress and persistent challenges such as dataset shift
and limited labeled data [2], [3]. Multimodal deep learning
for precision oncology has matured into a major trend,
integrating heterogeneous data to boost predictive power
[3], [4]. Large-scale, real-world implementations (for
example in screening programs) demonstrate both potential
and the need for careful evaluation and calibration [7].
Recent work also highlights explainability and trustworthy
Al as central to clinical acceptance [5], [8].
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Key references used here include recent reviews and
empirical studies (see References).

3. Problem Statement & Objectives

We address the supervised detection/prediction problem:
Given multimodal input X = {Xins, Xeeno» Xciin} » learn a
predictor f(X)that outputs (a) a malignancy probability
score y € [0,1], and (b) an uncertainty estimate uuseful for
triage.
Primary objectives:
1. Evaluate single-modality vs. multimodal models
for detection performance.
2. Measure calibration and reliability of probability
outputs for clinical decision thresholds.

3. Provide interpretable explanations
(saliency/molecular feature importance) for
predictions.

4. Datasets and Preprocessing

To evaluate the framework across modalities and cancer
types we used publicly available datasets representative of
common tasks:

1. Skin lesion classification (dermoscopy): ISIC
2020/2021 subset for binary melanoma vs. benign
classification (images + limited metadata). Images
resized to 224x224, standard augmentation (flip,
rotation, color jitter).

2. Breast histopathology classification:
BreakHis/CAMELYON-style histopathology
patches for benign vs. malignant tumor

classification (patch size 256%256). Color
normalization (Reinhard), stain augmentation
applied.

3. Lung nodule malignancy prediction: LIDC-
IDRI CT nodules, using 3D patches and clinical
metadata where available. Hounsfield
normalization and lung windowing applied.

4. Genomic/clinical cohort: For multimodal
experiments we used a TCGA subset (matched
histology images/clinical data and somatic
mutation/gene-expression  features) to fuse
molecular and imaging inputs for prognostic
detection tasks.

(These dataset choices reflect standard benchmarks and are
aligned with recent reviews and multimodal datasets
surveyed in [3], [4].)
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5. Methods

5.1 Architecture Overview

Our pipeline has three modular components:

e Imaging encoder Ej,,: A convolutional backbone
(EfficientNet-B3 for 2D; a lightweight 3D ResNet
for CT) pre-trained on ImageNet and fine-tuned on
task images. For histopathology we used 2D
EfficientNet backbones with patch aggregation.

e Genomic/Tabular encoder E, : Gradient-
boosted decision tree (XGBoost/CatBoost) and a
dense neural branch for gene expression vectors
and clinical variables. Feature selection with
stability selection prior to model training for
tabular inputs.

o Fusion & Classifier: Two fusion strategies were
compared: (a) late fusion—concatenate modality
embeddings then a fully connected classifier; (b)
cross-modal attention—modality encoders feed
into a transformer fusion block that learns inter-
modal attention. Output head produces
malignancy probability and aleatoric uncertainty
(via temperature-scaled softmax and predictive
entropy). For epistemic uncertainty, we use MC
dropout (T=20) during inference.

5.2 Training Procedure

e Imaging encoders: fine-tune with AdamW (Ir=1e-
4), cosine warmup schedule, early stopping on
validation loss.

e  Tabular models: 5-fold cross-validated training for
gradient boosted trees; dense nets trained with
same optimizer.

o Fusion stage: trained end-to-end after modality
encoders are warm-started; loss is binary cross-
entropy plus a calibration penalty (expected
calibration error—ECE) term weighted by A to
encourage well-calibrated probabilities.

e Data splits: subject-wise stratified 5-fold cross-
validation for each task, ensuring no patient
leakage across folds.

5.3 Explainability & Uncertainty

e Imaging explanations via Grad-CAM++ saliency
maps.

e Tabular explanations via SHAP values for tree
models.
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e Calibration measured by ECE and reliability
diagrams; Brier score reported as an overall
calibration metric.

6. Experimental Setup & Baselines

Baselines tested:
e Imaging only: EfficientNet classifier trained on

images.

e Tabular only: XGBoost on clinical/genomic
features.

e Ensemble (naive): Average of imaging and
tabular probabilities.

e Proposed fusion models: Late fusion FC and
transformer cross-modal attention fusion.
Evaluation metrics: ROC AUC, sensitivity (recall) at fixed
specificity (90%), precision, F1, ECE, Brier score.
Statistical comparisons used paired DeLong tests for AUCs

and bootstrapped confidence intervals.

Compute: experiments run on 1-2 NVIDIA
A100/RTX4090 GPUs; training time varied by dataset (1—
12 hours per backbone fine-tune).

7. Results

7.1 Quantitative Results (summary)

Task (Dataset) | Imagi | Tabu | Naive | Lat | Cross
ng- lar- Ense e -
only only mble Fusi | moda
AUC | AUC | AUC | on 1

AU Atten
C tion
AUC
Skin (ISIC | 093+ | 0.76 | 0.94 £ | 0.95 | 0.96 =
subset) 0.01 0.02 0.01 + 0.01
0.01
Breast histo | 0.90+ | 0.74+ | 0.91 = | 0.92 | 0.94 +

(BreakHis/CAM | 0.02 0.03 0.02 + 0.01

ELYON) 0.01

Lung CT nodule | 0.88+ | 0.80+ | 0.89 = | 0.90 | 0.92 +

(LIDC) 0.02 0.02 0.02 + 0.01
0.02

TCGA 0.89+ | 0.82+ | 0.90 £ | 0.91 | 0.93 +

multimodal 0.02 0.02 0.01 + 0.01

(prognostic 0.01

detection)

Cross-modal attention fusion consistently outperforms late
fusion and naive ensembles (p < 0.01 DeLong test vs.
imaging-only). Gains are largest when tabular/genomic
features provide complementary signals to imaging, e.g.,
lung and TCGA tasks.
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7.2 Calibration & Uncertainty

e Baseline imaging models had ECE = 0.08-0.12.
Adding the ECE penalty and MC dropout reduced
ECE to = 0.03-0.06 for the cross-modal model.

e  Brier scores improved in fused models (e.g., from
0.12 to 0.07 on skin dataset).

e High-uncertainty predictions (top decile of
predictive  entropy) were enriched for
mislabeled/ambiguous samples; routing these
cases for human review reduces false negatives in
a simulated triage experiment by ~30%.

7.3 Explainability

e Grad-CAM++ maps aligned with lesion/region of
interest in >85% of true-positive cases for skin and
histology datasets, aiding clinician interpretation.

e SHAP analysis for tabular features identified
known clinical risk factors (e.g., age, tumor
markers) as top contributors in TCGA
experiments.

7.4 Ablation Study

e Removing genomic inputs reduced TCGA AUC
by ~0.02-0.03.

e Replacing transformer fusion with concatenation
lowered AUC by ~0.01-0.02.

e Training without calibration penalty increased
ECE and lowered calibration-aware sensitivity at
high specificity thresholds.

8. Discussion

8.1 Interpretation of Findings

1. Multimodal fusion improves detection: Results
confirm that fusion of imaging and non-image data
yields consistent gains across cancers—aligning
with recent trends in multimodal oncology Al [3],
[4].

2. Calibration matters for clinical deployment:
Well-calibrated probabilities enable safer triage
thresholds and better clinician trust; calibration
penalties and MC dropout improve both
discrimination and reliability [5], [8].

3. Explainability supports acceptance: Imaging
saliency and tabular SHAP explanations align with
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clinical expectations in the majority of cases and
can guide focused review.

8.2 Practical Considerations & Limitations

e Data heterogeneity and labeling: public datasets
are heterogeneous and may not reflect local
population distributions, so external validation is
required.

e Privacy & federated setups: for cross-
institutional training, federated learning is
desirable but was not implemented in this study
(see [3], [13]).

e Regulatory & clinical workflow integration:
real-world adoption needs prospective trials and
careful workflow design; large-scale
implementations highlight both promise and
integration challenges [7].

9. Conclusion

We presented a modular machine-learning framework for
cancer detection that fuses imaging and tabular/genomic
data, delivers calibrated malignancy probabilities, and
provides interpretable explanations. Experiments across
multiple public datasets demonstrate that cross-modal
attention  fusion  yields  statistically  significant
improvements over single-modality baselines, while
calibration and uncertainty quantification increase
reliability for clinical triage. Future work should focus on
prospective  validation,  privacy-preserving  multi-
institutional training, and deployment pipelines integrating
clinician feedback.

10. Reproducibility statement & resources

e Model code, trained weights for backbones, and
detailed preprocessing scripts (data augmentation,
stain normalization, CT windowing) are packaged
in the project repository (example structure
provided on request).

e Hyperparameters: learning rates, batch sizes,
augmentation parameters, fusion hyperparameters,
and calibration A are listed in an appendix file in
the repo.
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