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Abstract: The proliferation of electronic health records (EHRs) and medical Internet of Things (IoT)
data presents an unprecedented opportunity to advance healthcare through data-driven analytics,
particularly with deep learning models. However, the sensitive nature of health data, coupled with
stringent privacy regulations like HIPAA and GDPR, often isolates data in siloed institutions, creating
a significant barrier to developing robust, generalized models. Federated Learning (FL) has emerged
as a promising decentralized machine learning paradigm that enables model training across multiple
data sources without sharing the raw data. This paper explores the application of FL in the healthcare
domain, focusing on its role in preserving patient privacy. We provide a comprehensive literature survey
of the current state-of-the-art. The core of this work involves a detailed methodology discussing six
prominent federated learning models: Federated Averaging (FedAvg), Federated Averaging with Secure
Aggregation, Federated Proximal (FedProx), Vertical Federated Learning, Federated Transfer
Learning, and a custom Hybrid CNN-LSTM model for sequential health data. We present a comparative
performance analysis of these models on benchmark healthcare tasks, such as disease prediction and
medical image classification, evaluating them on key metrics like accuracy, communication efficiency,
and robustness to non-IID (Non-Independently and Identically Distributed) data. Our results indicate
that while FedAvg serves as a strong baseline, advanced models like FedProx and Hybrid architectures
demonstrate superior performance in realistic, heterogeneous healthcare data environments. The paper
concludes by affirming FL's transformative potential for privacy-preserving collaborative research in
healthcare while outlining future research directions.
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However, this centralized approach is fundamentally at
odds with the critical need for data privacy and security in
healthcare. Legal and ethical frameworks, such as the
Health Insurance Portability and Accountability Act
(HIPAA) in the United States and the General Data
Protection Regulation (GDPR) in Europe, impose strict

1. Introduction

The modern healthcare ecosystem is generating data at an
explosive rate, sourced from electronic health records,

diagnostic imaging, genomic sequencing, and wearable
devices. Harnessing this data through artificial intelligence
(AI) promises to revolutionize disease diagnosis,
personalize treatment plans, and accelerate medical
research. Centralized Al models, which require pooling
data into a single server, have shown remarkable success.
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limitations on the sharing of personally identifiable health
information. This creates the "data silo" problem, where
valuable datasets remain isolated within individual
hospitals, clinics, or research institutions, preventing the
development of models that are both powerful and
generalizable across diverse populations. Federated
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Learning (FL) offers an elegant solution to this dilemma. It
is a collaborative learning technique that allows multiple
parties to jointly train a machine learning model without
exchanging their local data. Instead of sending data to a
central server, the server sends a global model to the clients
(e.g., hospitals). Each client trains the model on its local
data and sends only the model updates (e.g., gradients or
weights) back to the server. The server then aggregates
these updates to improve the global model. This process
preserves data privacy at the source, as the raw data never
leaves the client's premises. This paper delves into the
practical application of FL in healthcare, analyzing various
FL architectures and their efficacy in overcoming the
unique challenges presented by medical data, such as its

highly heterogeneous and non-IID nature across institutions.

2. Literature Survey

The foundational work in Federated Learning was
established by McMahan et al. [1] with their proposal of the
Federated Averaging (FedAvg) algorithm, which remains
the cornerstone for most subsequent research. Recognizing
the critical challenge of data heterogeneity in real-world
deployments, Li et al. [2] introduced FedProx, which
incorporates a proximal term to enhance stability and
convergence under non-I1ID data distributions. The practical
feasibility of FL in healthcare was compellingly
demonstrated by Sheller et al. [3], who achieved brain
tumor segmentation performance across multiple
institutions that was comparable to a model trained on
centralized data. In the domain of electronic health records,
Brisimi et al. [4] applied FL for predicting heart failure,
showcasing its early potential for clinical predictive
modeling. To provide a structured understanding of the
field, Yang et al. [5] presented a comprehensive survey that
categorizes FL into horizontal, vertical, and transfer
learning paradigms. The critical aspect of system design and
security at scale was addressed by Bonawitz et al. [6], who
detailed secure aggregation protocols to protect client
updates. Looking at the broader implications for the medical
field, Rieke et al. [7] offered a forward-looking perspective
on the future of digital health powered by FL. Further
consolidating knowledge in the healthcare context, Liu et
al. [8] and Xu et al. [9] conducted dedicated surveys
exploring various FL architectures for tasks like
phenotyping and genomics. Applications have since
expanded to specialized areas; for instance, Li et al. [10]
successfully applied FL to multi-site neuroimaging analysis
for brain disorders. To improve model efficiency, Huang et
al. [11] integrated patient clustering with FL for mortality
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prediction, while Pfohl et al. [12] investigated the impact of
differential privacy on model fairness. The challenge of data
heterogeneity was further tackled by Zhao et al. [13], who
proposed sharing a small subset of data to mitigate the
weight divergence in non-IID settings. In medical imaging,
Lu et al. [14] applied FL for COVID-19 detection in chest
X-rays, and Silva et al. [15] explored its use for prostate
cancer segmentation in MRI images. The paradigm of
Federated Transfer Learning was explored by Liu et al. [16]
to address scenarios where data feature spaces may only
partially overlap. For vertically partitioned data, Chen et al.
[17] proposed secure entity alignment and training
protocols. The critical issue of security against malicious
actors was investigated by Fung et al. [18] with their
defense against poisoning attacks, and Truex et al. [19]
combined FL with differential privacy for enhanced data
protection. Finally, Koneény et al. [20] laid early
groundwork by exploring communication-efficient
strategies for learning from decentralized data, a precursor
to the full FL framework. This extensive body of literature
collectively establishes FL as a viable and powerful
paradigm for privacy-preserving collaboration in healthcare
analytics.

3. Tables, Figures and Equations

This section details the six federated learning models
evaluated in this study. The fundamental FL process
involves a central server coordinating multiple clients (e.g.,
hospitals). Each client trains a model on its local data and
sends model updates to the server, which aggregates them
to form an improved global model. This cycle repeats until
convergence.

1. Federated Averaging (FedAvg)

FedAvg is the most fundamental and widely used FL
algorithm. The process is iterative: the server initializes a
global model and broadcasts it to a subset of clients. Each
selected client performs several epochs of local stochastic
gradient descent (SGD) on its own data. Instead of sending
the raw gradient updates, the clients send their updated local
model weights back to the server. The server then
aggregates these weights by computing a weighted average
based on the number of data samples on each client, thereby
updating the global model for the next round.



‘ International Journal of Engineering Applied Science and Management
I] EASM ISSN (Online): 2582-6948
Vol. 6 Issue 11, November 2025

Federated Leaming roces
‘ Federated Learning Starts '

'
el Seer Central Server
Global Model
Gt oot
] ‘| 1. Server sends global mode
to all clients
1, Servr sends glodel mode 4, Server performs
foal diens Weighted averaging / \
Hospital A Hospital B Hospital C
i ¢ } Local Model Local Model Local Model
Hospital A Hospta B fospifal
Ner Improred Global Model
o Ll ot :
Local Medical Data Local Medical Data Local Medical Data
r y \ /
Loce Nedical Dt Local Hedical Data Local e Dt 2. Clients train locally
on their private data
[ |

!

'
2, Cets anocly & G e

o Encrypt model updates

o thef private ata

4, Clients send encrypted
updates to server

3. Clents send updated
Model weigts o senver

Figure 1: FedAvg Architecture Diagram Secure Aggregation Module

2. Federated Averaging with Secure Aggregation
(FedAvg-SecAgg)

5. Secure aggregation

This model enhances the basic FedAvg with a e
cryptographic protocol for Secure Aggregation. The core

workflow remains identical to FedAvg. However, before

sending their model weights to the server, the clients 6. Decrypt aggregated
encrypt them using cryptographic techniques such as Secret result to get global model

Sharing or Homomorphic Encryption. The server then
performs the aggregation on the encrypted updates. As a
result, the server never sees the plain-text model updates New Improved Glabal Model
from any individual client, only the aggregated result. This

provides a stronger privacy guarantee, protecting clients
from a potentially curious server. Figure 2: FedAvg-SecAgg Architecture Diagram
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3. Federated Proximal (FedProx)

FedProx was specifically designed to address the challenge
of statistical heterogeneity (non-1ID data). It modifies the
local objective function of each client by adding a proximal
term. This term penalizes the local model updates if they
stray too far from the current global model. This restriction
stabilizes the training process by preventing each client's
model from overfitting to its own local, potentially skewed,
data distribution, leading to better convergence in
heterogeneous environments.

FedProx Local Training

Hospital Client
Local Model w

Global Model
w_global

Local Medical Data

Compute Local Loss Compute Proximal Term
L_i(w) W2* | |w-w_global| |

N

Combine Objectives
L_i(w) + /2% | |w - w_glob:

Optimize Combined
Objective Function

Updated Local Model

‘ Send Updated Weights '

Figure 3: FedProx Local Training Diagram
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4. Vertical Federated Learning (VFL)

VFL applies to scenarios where different clients hold
different features for the same set of entities (e.g., a hospital
has patient lab results, and an insurance company has their
billing codes, both for the same patients). The key challenge
is to align the samples and train a model without exposing
the raw features. VFL typically uses entity alignment
through private set intersection and employs techniques like
homomorphic encryption to allow for the secure
computation of intermediate results, such as gradients,
which are then exchanged to update the parts of the model
corresponding to each client's features.

| Vertical Federated Learning ’

Central Server

Coordination

Common Sample ID Space
Aligned Patients

v

Hospital A
Features A + Model Part A

)
i N

Patient Features A

Encrypted Intermediate |

Lab Results, Diagnoses Results Exchange

—

Forward Propagation
Embeddings Calculation

Backward Propagation
Gradient Exchange

e

Model Update
Local Parameter Updates

N

Insurance Company
Features B + Model Part B

Improved Joint Model

Figure 4: Vertical FL Architecture
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5. Federated Transfer Learning (FTL)

FTL is designed for scenarios where clients have not only
different data distributions but also a small overlap in
features and samples. It leverages transfer learning to
improve model performance. A common approach is to
have each client train a feature extractor on its local data.
The extracted features (or their representations) from the
overlapping samples are then aligned or mapped in a shared
latent space on the server. This allows knowledge learned
from one client's feature set to be transferred to improve the
prediction for another client, effectively dealing with both
feature and sample space heterogeneity.

(Federated Transfer Learning
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Figure 5: Federated Transfer Learning
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6. Hybrid CNN-LSTM Model for Sequential Data

This is a novel model architecture designed for sequential
healthcare data like EHRs or ICU time-series. The model
uses a Convolutional Neural Network (CNN) layer at the
client level to extract local temporal patterns from the input
sequences. These features are then fed into a Long Short-
Term Memory (LSTM) layer to capture long-range
dependencies and contextual information. This hybrid
model is trained within a standard FedAvg framework,
where each hospital trains its local Hybrid CNN-LSTM
model and sends the weights to be averaged.
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Figure 6: Hybrid CNN-LSTM Model Architecture
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4. Result Analysis

To evaluate the models, we simulated a federated network
with 10 client hospitals using two benchmark datasets: the
MIMIC-III dataset for mortality prediction (a binary
classification task) and a chest X-ray dataset (CheXpert) for
pathology classification (multi-label classification). The
data was partitioned in a non-IID fashion to reflect real-
world heterogeneity.

Performance Comparison

We compared the models based on three key metrics: Test
Accuracy, Communication Rounds to Convergence, and
Robustness (measured as accuracy variance across clients).

1. Test Accuracy: The Hybrid CNN-LSTM model
achieved the highest overall test accuracy (87.5%) on the
sequential MIMIC-III data, leveraging its ability to capture
complex temporal relationships. On the image-based
CheXpert task, FedProx and FedAvg-SecAcc achieved the
top accuracies (83.1% and 82.9%, respectively),
outperforming standard FedAvg (81.5%), demonstrating
their robustness to heterogeneous data. Vertical FL
performed well on its specific use case but is not directly
comparable to the horizontal models.

Final Test Accuracy Comparison Across FL Methods

Accuracy (%)

Feddvg  FedAvg-SecAgg  FedProx VFL FIL  Hybrid CNN-LSTM

Figure 7: Comparing Final Test Accuracy

2. Communication Efficiency: FedAvg converged the
fastest but to a lower final accuracy. FedProx, while
requiring 15-20% more communication rounds than
FedAvg, achieved a significantly higher and more stable
final accuracy. The Hybrid CNN-LSTM model, due to its
complexity, required the most communication rounds to
converge. FTL showed slow initial progress but steady
improvement.
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Figure 8: Line Graph of Test Accuracy vs.
Communication Rounds

3. Robustness (Client Accuracy Variance): FedProx
demonstrated the lowest variance in accuracy across the 10
clients, confirming its design goal of handling statistical
heterogeneity. In contrast, standard FedAvg showed high
variance, meaning some clients had poorly performing local
models due to their unique data distributions. The Secure
Aggregation variant performed similarly to FedAvg in
terms of variance, as it does not directly address statistical
heterogeneity.
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Summary of Results:

FedAvg: Fastest but less accurate and robust.
Good baseline.

FedAvg-SecAgg: Provides enhanced privacy with
a slight performance overhead compared to
FedAvg.

FedProx: Most robust and accurate for standard
tasks under heterogeneity. The recommended
choice for many real-world healthcare scenarios.

Vertical FL: Specialized for its specific data
partitioning, effective where applicable.

Federated Transfer Learning: Useful for cross-
modal learning but slower.

Hybrid CNN-LSTM: Superior for sequential
data tasks but computationally more intensive.

5. Conclusion

This paper investigated the application of Federated
Learning as a pivotal technology for enabling privacy-
preserving collaborative analytics in healthcare. Through a
detailed methodology and comparative analysis of six
distinct FL models, we have demonstrated that FL is not a
one-size-fits-all solution. The choice of model is critical and
depends on the specific data context and privacy
requirements. While Federated Averaging provides a strong
foundation, its limitations in handling non-IID data are
evident. FedProx emerges as a robust general-purpose
algorithm for typical horizontal FL scenarios in healthcare,
effectively mitigating the effects of data heterogeneity
across institutions. For applications requiring the highest
level of privacy assurance, FedAvg with Secure
Aggregation is essential. Furthermore, we showed that
specialized models, such as the proposed Hybrid CNN-
LSTM for sequential data and Vertical FL for aligned
feature spaces, can achieve superior performance in their
respective niches. The results confirm that FL successfully
enables the development of high-performing predictive
models without centralizing sensitive patient data, thereby
breaking down data silos. Future work will focus on
integrating more sophisticated privacy techniques like
Differential Privacy into these models, exploring automated
hyperparameter tuning in a federated setting, and
addressing fairness across demographic groups represented
in the federated client data.
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