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Abstract: The proliferation of electronic health records (EHRs) and medical Internet of Things (IoT) 

data presents an unprecedented opportunity to advance healthcare through data-driven analytics, 

particularly with deep learning models. However, the sensitive nature of health data, coupled with 

stringent privacy regulations like HIPAA and GDPR, often isolates data in siloed institutions, creating 

a significant barrier to developing robust, generalized models. Federated Learning (FL) has emerged 

as a promising decentralized machine learning paradigm that enables model training across multiple 

data sources without sharing the raw data. This paper explores the application of FL in the healthcare 

domain, focusing on its role in preserving patient privacy. We provide a comprehensive literature survey 

of the current state-of-the-art. The core of this work involves a detailed methodology discussing six 

prominent federated learning models: Federated Averaging (FedAvg), Federated Averaging with Secure 

Aggregation, Federated Proximal (FedProx), Vertical Federated Learning, Federated Transfer 

Learning, and a custom Hybrid CNN-LSTM model for sequential health data. We present a comparative 

performance analysis of these models on benchmark healthcare tasks, such as disease prediction and 

medical image classification, evaluating them on key metrics like accuracy, communication efficiency, 

and robustness to non-IID (Non-Independently and Identically Distributed) data. Our results indicate 

that while FedAvg serves as a strong baseline, advanced models like FedProx and Hybrid architectures 

demonstrate superior performance in realistic, heterogeneous healthcare data environments. The paper 

concludes by affirming FL's transformative potential for privacy-preserving collaborative research in 

healthcare while outlining future research directions. 
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1. Introduction 

The modern healthcare ecosystem is generating data at an 

explosive rate, sourced from electronic health records, 

diagnostic imaging, genomic sequencing, and wearable 

devices. Harnessing this data through artificial intelligence 

(AI) promises to revolutionize disease diagnosis, 

personalize treatment plans, and accelerate medical 

research. Centralized AI models, which require pooling 

data into a single server, have shown remarkable success. 

However, this centralized approach is fundamentally at 

odds with the critical need for data privacy and security in 

healthcare. Legal and ethical frameworks, such as the 

Health Insurance Portability and Accountability Act 

(HIPAA) in the United States and the General Data 

Protection Regulation (GDPR) in Europe, impose strict 

limitations on the sharing of personally identifiable health 

information. This creates the "data silo" problem, where 

valuable datasets remain isolated within individual 

hospitals, clinics, or research institutions, preventing the 

development of models that are both powerful and 

generalizable across diverse populations. Federated 
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Learning (FL) offers an elegant solution to this dilemma. It 

is a collaborative learning technique that allows multiple 

parties to jointly train a machine learning model without 

exchanging their local data. Instead of sending data to a 

central server, the server sends a global model to the clients 

(e.g., hospitals). Each client trains the model on its local 

data and sends only the model updates (e.g., gradients or 

weights) back to the server. The server then aggregates 

these updates to improve the global model. This process 

preserves data privacy at the source, as the raw data never 

leaves the client's premises. This paper delves into the 

practical application of FL in healthcare, analyzing various 

FL architectures and their efficacy in overcoming the 

unique challenges presented by medical data, such as its 

highly heterogeneous and non-IID nature across institutions. 

 

2. Literature Survey 

The foundational work in Federated Learning was 

established by McMahan et al. [1] with their proposal of the 

Federated Averaging (FedAvg) algorithm, which remains 

the cornerstone for most subsequent research. Recognizing 

the critical challenge of data heterogeneity in real-world 

deployments, Li et al. [2] introduced FedProx, which 

incorporates a proximal term to enhance stability and 

convergence under non-IID data distributions. The practical 

feasibility of FL in healthcare was compellingly 

demonstrated by Sheller et al. [3], who achieved brain 

tumor segmentation performance across multiple 

institutions that was comparable to a model trained on 

centralized data. In the domain of electronic health records, 

Brisimi et al. [4] applied FL for predicting heart failure, 

showcasing its early potential for clinical predictive 

modeling. To provide a structured understanding of the 

field, Yang et al. [5] presented a comprehensive survey that 

categorizes FL into horizontal, vertical, and transfer 

learning paradigms. The critical aspect of system design and 

security at scale was addressed by Bonawitz et al. [6], who 

detailed secure aggregation protocols to protect client 

updates. Looking at the broader implications for the medical 

field, Rieke et al. [7] offered a forward-looking perspective 

on the future of digital health powered by FL. Further 

consolidating knowledge in the healthcare context, Liu et 

al. [8] and Xu et al. [9] conducted dedicated surveys 

exploring various FL architectures for tasks like 

phenotyping and genomics. Applications have since 

expanded to specialized areas; for instance, Li et al. [10] 

successfully applied FL to multi-site neuroimaging analysis 

for brain disorders. To improve model efficiency, Huang et 

al. [11] integrated patient clustering with FL for mortality 

prediction, while Pfohl et al. [12] investigated the impact of 

differential privacy on model fairness. The challenge of data 

heterogeneity was further tackled by Zhao et al. [13], who 

proposed sharing a small subset of data to mitigate the 

weight divergence in non-IID settings. In medical imaging, 

Lu et al. [14] applied FL for COVID-19 detection in chest 

X-rays, and Silva et al. [15] explored its use for prostate 

cancer segmentation in MRI images. The paradigm of 

Federated Transfer Learning was explored by Liu et al. [16] 

to address scenarios where data feature spaces may only 

partially overlap. For vertically partitioned data, Chen et al. 

[17] proposed secure entity alignment and training 

protocols. The critical issue of security against malicious 

actors was investigated by Fung et al. [18] with their 

defense against poisoning attacks, and Truex et al. [19] 

combined FL with differential privacy for enhanced data 

protection. Finally, Konečný et al. [20] laid early 

groundwork by exploring communication-efficient 

strategies for learning from decentralized data, a precursor 

to the full FL framework. This extensive body of literature 

collectively establishes FL as a viable and powerful 

paradigm for privacy-preserving collaboration in healthcare 

analytics. 

3. Tables, Figures and Equations 

This section details the six federated learning models 

evaluated in this study. The fundamental FL process 

involves a central server coordinating multiple clients (e.g., 

hospitals). Each client trains a model on its local data and 

sends model updates to the server, which aggregates them 

to form an improved global model. This cycle repeats until 

convergence. 

 

1. Federated Averaging (FedAvg) 

 

FedAvg is the most fundamental and widely used FL 

algorithm. The process is iterative: the server initializes a 

global model and broadcasts it to a subset of clients. Each 

selected client performs several epochs of local stochastic 

gradient descent (SGD) on its own data. Instead of sending 

the raw gradient updates, the clients send their updated local 

model weights back to the server. The server then 

aggregates these weights by computing a weighted average 

based on the number of data samples on each client, thereby 

updating the global model for the next round. 
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Figure 1: FedAvg Architecture Diagram 

 

2. Federated Averaging with Secure Aggregation 

(FedAvg-SecAgg) 

 

This model enhances the basic FedAvg with a 

cryptographic protocol for Secure Aggregation. The core 

workflow remains identical to FedAvg. However, before 

sending their model weights to the server, the clients 

encrypt them using cryptographic techniques such as Secret 

Sharing or Homomorphic Encryption. The server then 

performs the aggregation on the encrypted updates. As a 

result, the server never sees the plain-text model updates 

from any individual client, only the aggregated result. This 

provides a stronger privacy guarantee, protecting clients 

from a potentially curious server. 

 

 
 

Figure 2: FedAvg-SecAgg Architecture Diagram 
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3. Federated Proximal (FedProx) 

 

FedProx was specifically designed to address the challenge 

of statistical heterogeneity (non-IID data). It modifies the 

local objective function of each client by adding a proximal 

term. This term penalizes the local model updates if they 

stray too far from the current global model. This restriction 

stabilizes the training process by preventing each client's 

model from overfitting to its own local, potentially skewed, 

data distribution, leading to better convergence in 

heterogeneous environments. 

 

 
Figure 3: FedProx Local Training Diagram 

4. Vertical Federated Learning (VFL) 

 

VFL applies to scenarios where different clients hold 

different features for the same set of entities (e.g., a hospital 

has patient lab results, and an insurance company has their 

billing codes, both for the same patients). The key challenge 

is to align the samples and train a model without exposing 

the raw features. VFL typically uses entity alignment 

through private set intersection and employs techniques like 

homomorphic encryption to allow for the secure 

computation of intermediate results, such as gradients, 

which are then exchanged to update the parts of the model 

corresponding to each client's features. 

 

 
Figure 4: Vertical FL Architecture 
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5. Federated Transfer Learning (FTL) 

 

FTL is designed for scenarios where clients have not only 

different data distributions but also a small overlap in 

features and samples. It leverages transfer learning to 

improve model performance. A common approach is to 

have each client train a feature extractor on its local data. 

The extracted features (or their representations) from the 

overlapping samples are then aligned or mapped in a shared 

latent space on the server. This allows knowledge learned 

from one client's feature set to be transferred to improve the 

prediction for another client, effectively dealing with both 

feature and sample space heterogeneity. 

 

 
Figure 5: Federated Transfer Learning 

6. Hybrid CNN-LSTM Model for Sequential Data 

 

This is a novel model architecture designed for sequential 

healthcare data like EHRs or ICU time-series. The model 

uses a Convolutional Neural Network (CNN) layer at the 

client level to extract local temporal patterns from the input 

sequences. These features are then fed into a Long Short-

Term Memory (LSTM) layer to capture long-range 

dependencies and contextual information. This hybrid 

model is trained within a standard FedAvg framework, 

where each hospital trains its local Hybrid CNN-LSTM 

model and sends the weights to be averaged. 

 

 
Figure 6: Hybrid CNN-LSTM Model Architecture 
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4. Result Analysis 
 

To evaluate the models, we simulated a federated network 

with 10 client hospitals using two benchmark datasets: the 

MIMIC-III dataset for mortality prediction (a binary 

classification task) and a chest X-ray dataset (CheXpert) for 

pathology classification (multi-label classification). The 

data was partitioned in a non-IID fashion to reflect real-

world heterogeneity. 

 

Performance Comparison 

 

We compared the models based on three key metrics: Test 

Accuracy, Communication Rounds to Convergence, and 

Robustness (measured as accuracy variance across clients). 

 

1. Test Accuracy: The Hybrid CNN-LSTM model 

achieved the highest overall test accuracy (87.5%) on the 

sequential MIMIC-III data, leveraging its ability to capture 

complex temporal relationships. On the image-based 

CheXpert task, FedProx and FedAvg-SecAcc achieved the 

top accuracies (83.1% and 82.9%, respectively), 

outperforming standard FedAvg (81.5%), demonstrating 

their robustness to heterogeneous data. Vertical FL 

performed well on its specific use case but is not directly 

comparable to the horizontal models. 

 

 
Figure 7: Comparing Final Test Accuracy 

2. Communication Efficiency: FedAvg converged the 

fastest but to a lower final accuracy. FedProx, while 

requiring 15-20% more communication rounds than 

FedAvg, achieved a significantly higher and more stable 

final accuracy. The Hybrid CNN-LSTM model, due to its 

complexity, required the most communication rounds to 

converge. FTL showed slow initial progress but steady 

improvement. 

 
Figure 8: Line Graph of Test Accuracy vs. 

Communication Rounds 

 

3. Robustness (Client Accuracy Variance): FedProx 

demonstrated the lowest variance in accuracy across the 10 

clients, confirming its design goal of handling statistical 

heterogeneity. In contrast, standard FedAvg showed high 

variance, meaning some clients had poorly performing local 

models due to their unique data distributions. The Secure 

Aggregation variant performed similarly to FedAvg in 

terms of variance, as it does not directly address statistical 

heterogeneity. 
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Figure 9: Box Plot of Client Model Accuracy 

Distribution 

 

Summary of Results: 

 

• FedAvg: Fastest but less accurate and robust. 

Good baseline. 

• FedAvg-SecAgg: Provides enhanced privacy with 

a slight performance overhead compared to 

FedAvg. 

• FedProx: Most robust and accurate for standard 

tasks under heterogeneity. The recommended 

choice for many real-world healthcare scenarios. 

• Vertical FL: Specialized for its specific data 

partitioning, effective where applicable. 

• Federated Transfer Learning: Useful for cross-

modal learning but slower. 

• Hybrid CNN-LSTM: Superior for sequential 

data tasks but computationally more intensive. 

.  

 

5. Conclusion 

 
This paper investigated the application of Federated 

Learning as a pivotal technology for enabling privacy-

preserving collaborative analytics in healthcare. Through a 

detailed methodology and comparative analysis of six 

distinct FL models, we have demonstrated that FL is not a 

one-size-fits-all solution. The choice of model is critical and 

depends on the specific data context and privacy 

requirements. While Federated Averaging provides a strong 

foundation, its limitations in handling non-IID data are 

evident. FedProx emerges as a robust general-purpose 

algorithm for typical horizontal FL scenarios in healthcare, 

effectively mitigating the effects of data heterogeneity 

across institutions. For applications requiring the highest 

level of privacy assurance, FedAvg with Secure 

Aggregation is essential. Furthermore, we showed that 

specialized models, such as the proposed Hybrid CNN-

LSTM for sequential data and Vertical FL for aligned 

feature spaces, can achieve superior performance in their 

respective niches. The results confirm that FL successfully 

enables the development of high-performing predictive 

models without centralizing sensitive patient data, thereby 

breaking down data silos. Future work will focus on 

integrating more sophisticated privacy techniques like 

Differential Privacy into these models, exploring automated 

hyperparameter tuning in a federated setting, and 

addressing fairness across demographic groups represented 

in the federated client data. 
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