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Abstract: The integration of Artificial Neural Networks (ANNs), Machine Learning (ML), Deep 

Learning (DL), and Convolutional Neural Networks (CNNs) is revolutionizing medical imaging 

and diagnostics. ANNs utilize a layered architecture and iterative training to refine accuracy by 

adjusting weights based on errors. DL further enhances this by managing large datasets and 

abstracting complex features through deep structures. CNNs, a specialized form of DL, excel in 

image analysis through convolution and pooling layers, improving feature extraction and 

precision. Radiomics builds on these advancements by correlating imaging features with clinical 

outcomes, marking a shift from scalar to pixel-based data analysis. This evolution enhances 

predictive capabilities for treatment responses and outcomes. However, the adoption of AI in 

healthcare faces challenges such as data quality, workflow integration, and ethical considerations. 

Addressing these concerns—ensuring robust data management, patient confidentiality, and 

regulatory compliance—is crucial. Ongoing focus on patient-centered design and 

interdisciplinary collaboration will be essential to fully realize AI's transformative potential in 

healthcare.  
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1. Introduction 

Artificial Neural Networks (ANNs) are computational 

models inspired by the human brain, consisting of 

interconnected nodes organized into layers. Each node 

processes inputs using weighted connections, with the 

network's goal being to minimize errors through iterative 

adjustments of these weights. Deep Learning (DL), an 

advanced form of Machine Learning (ML), utilizes ANNs 

with many layers to represent complex abstractions and 

perform detailed analyses. In medical imaging, DL often 

employs Convolutional Neural Networks (CNNs), which 

excel in extracting features from images through 

convolution and pooling layers. CNNs apply filters to 

image patches to identify patterns and features, reducing 

data complexity while preserving critical information. This 

process involves convolutional layers followed by pooling 

layers that downsample feature maps, culminating in a 

flattened array input to a neural network. Radiomics, 

which extracts quantitative features from medical images, 

benefits from these techniques by providing detailed 

insights into disease characteristics. CNNs, by analyzing 

these features, can enhance diagnostic accuracy and 

predict treatment outcomes. The integration of AI in 

medical imaging relies on large datasets and sophisticated 

algorithms to improve accuracy and generalizability, while 

also addressing challenges such as data privacy and the 

need for diverse datasets. 

 

2. Basics of ANN, ML, DL, and CNN 

An Artificial Neural Network (ANN) consists of nodes 

that can number from hundreds to millions, organized into 

multiple layers (depth). Deep Learning (DL), which 

employs ANNs with many layers (e.g., more than six), is 
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seen as an advanced form of Machine Learning (ML). DL 

can conduct more detailed analyses by integrating 

extensive data and representing higher levels of 

abstraction. Each node in the network processes inputs 

from other nodes, with these inputs weighted. The goal of 

an ANN is to maximize accuracy by adjusting node 

weights based on errors calculated during forward 

propagation. Over successive iterations (epochs), the 

solution becomes progressively more accurate, a process 

similar to iterative reconstruction. The training phase 

benefits most from a large dataset. With each iteration, 

improvements become incrementally smaller. A 

secondary, typically smaller dataset is often used to 

validate the results, reflecting much of the current 

research. In medical imaging, large datasets are crucial for 

training ML and DL algorithms effectively. DL, 

characterized by its deep layer structure, is commonly 

associated with Convolutional Neural Networks (CNNs) 

for feature extraction from images. 

Consider a basic ANN with multiple input features and a 

binary output (disease or no disease). The architecture 

includes scaling layer inputs, several hidden layers with 

nodes arranged in specific configurations, along with an 

unscaling and probabilistic output layer. The scaling layer 

adjusts the input data to a predetermined range. Each node 

(perceptron) in the hidden layers receives weighted inputs 

and sums them with a bias to produce a net input value. 

This value is then processed by an activation function, 

typically linear or logistic (sigmoidal), to determine the 

node's output. Although each node produces a single 

output, this output serves as input for multiple nodes in the 

subsequent layer. The ANN's probabilistic output function 

follows the unscaling layer. 

 
Fig. 1 ANN using extracted radiomic features as inputs with a grounded 

truth in this supervised ANN being used for training and validation 
phases. After validation, the forward propagation could be used to make 

inferences about inputs without a grounded truth. 

 

To train and optimize the ANN, a loss index is utilized to 

assess both the error term and the regularization term. The 

sum of these terms constitutes the loss index. If the loss 

surpasses a predetermined threshold, an optimization 

algorithm adjusts weights and biases by back-propagating 

errors from the output layers towards the input layers. This 

iterative process continues, minimizing the loss index until 

the target value is achieved. An epoch denotes one 

complete pass of the dataset through the network, 

including forward and backward propagation. For large 

datasets, which cannot be processed in a single batch, the 

data is divided into smaller batches. Each batch undergoes 

forward and backward propagation, referred to as an 

iteration. Completing all batches constitutes an epoch. 

 
Fig. 2 Overview of the anatomy of an ANN. ANN, artificial neural 

network 

 

The loss function estimates the error between predictions 

and the grounded truth, while selection loss measures the 

error related to generalizability to new data. Both 

contribute to refining the final architecture of the ANN, 

which may involve adjustments to the number of nodes in 

the hidden layers. The architecture aims to minimize errors 

associated with the order and number of inputs by 

considering selection loss. Order selection defines the 

ANN's depth and the number of nodes in hidden layers, 

balancing data complexity with network depth to avoid 

overfitting or underfitting. Input selection identifies the 

most relevant inputs to include, as some inputs may be 

redundant and increase error. The input selection 

algorithm finds the combination and subset of inputs that 

minimize selection error. 

A Convolutional Neural Network (CNN) consists of 

convolution and pooling layers that extract features from 

images and produce a classification output. Convolution 

layers apply a kernel (typically 3 × 3) to an input tensor (a 

subset of pixels) to extract features. The kernel moves 

across the input tensor with a specified stride, which is the 

distance between successive positions. A stride greater 

than 1 can be left until pooling. The product of each pixel 

and the kernel is summed to generate a numerical value in 

the feature map. Multiple convolution layers use different 

kernels to create various feature maps, which are then 
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processed through an activation function, typically the 

rectified linear unit, before entering the pooling layer. 

The pooling layer reduces the computational resources 

required by downsampling the feature maps, often using 

max pooling. Max pooling selects the maximum value 

from a patch of the feature map, such as using a 2 × 2 filter 

with a stride of 2, where each set of 4 elements is 

represented by the maximum value. This process helps 

select the most representative patch of data, such as 

distinguishing between vertical and horizontal edges. 

Sequential convolution, kernel, and pooling steps create 

multiple data layers, which are then transformed into a 

one-dimensional array through a process known as 

flattening. 

 

3. Value of AI in Radiomic Feature Extraction 

and Selection 
Radiomics, a term introduced by Lambin et al, refers to the 

extraction of meaningful imaging features from 

radiological data, including nuclear medicine images. The 

primary goal of radiomics is to correlate these features 

with patient outcomes to advance precision medicine. In 

oncology, this involves collecting and processing medical 

images, outlining the lesion of interest, extracting radiomic 

features, and using these insights along with traditional 

semantic analysis to predict treatment outcomes or 

responses (see Figure 4). 

 

 
Figure 3. The CNN has a number of convolution and pooling layers 

before flattening and input to the neural network. Schematic 

representation of convolution using a 3 × 3 kernel to run sequential (in 
this case, successive to provide a stride of 1) 3 × 3 array of elements. The 

weighted sum of the kernel for the 3 × 3 input tensor creates a single 

representative value in the feature map. 

 

Multiple feature maps are produced by different kernels. 

Pooling using the max pool method and a 2 × 2 array 

produces pooling of the maximum count among 4 

connected elements (patch) to represent those data in the 

pooled feature map. Consecutive blocks of 2 × 2 elements 

means a stride of 2. The final pooled feature map 

immediately before input into the neural network can then 

be flattened from two-dimensional data into a single 

dimension; this approach avoids the need for global 

pooling. 

Traditionally, radiomic features provide a single scalar 

value to characterize a complete three-dimensional (3D) 

tumor volume. However, recent research has shifted 

towards pixel-based features, which generate multiple 

values per feature for a 3D tumor volume. These features 

can be input into a classifier, such as a decision tree, to 

identify the features most strongly associated with 

outcomes. The classifier evaluates features starting with 

the one most correlated with outcomes and progresses 

through the tree with subsequent features. This process 

allows machine learning to identify the most significant 

features and their combinations, reducing redundancy—

features that are strongly correlated with others—and 

minimizing error conflation. Artificial Neural Networks 

(ANNs) are data-driven and their results depend on the 

quality of the input data. In radiology and nuclear 

medicine, images may be processed by a Convolutional 

Neural Network (CNN), or extracted radiomic features can 

serve as inputs for an ANN. CNNs are particularly 

effective at identifying and extracting radiomic features 

from images and linking them to outcomes for better 

results. 

In oncology, the challenge is whether to simplify 3D 

tumor data into scalar radiomic features or to use raw 3D 

data directly in a CNN. While data-driven approaches like 

CNNs can be very powerful, they also carry a risk of 

overfitting to the original training data, which may limit 

their generalizability to new, unseen data. 

 

 
Fig 4 The radiomics workflow and integration with traditional (semantic) 

evaluation 

Recent advancements involve the use of 3D conditional 

generative adversarial networks, which consist of a 

generator and a discriminator network working in 

opposition. These networks generate both positive and 

negative input data from the original dataset, enhancing 

the network's ability to generalize more effectively. 
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5. AI and Big Data, a Programmatic 

Perspective 

The Task Ahead 

If AI is the engine driving future technology, then data is 

its fuel. Effective predictive AI models rely on large 

amounts of data that must be accessible, usable, and 

validated. Setting up an AI initiative requires significant 

investment in IT infrastructure to prepare this data. In 

imaging, this begins with creating an image warehouse for 

DICOM data, which should be stripped of patient 

identifiers or indexed to maintain confidentiality. Linking 

imaging data with clinical information is complex due to 

often poor integration between systems. 

Data curation is also essential. AI algorithms need accurate 

"ground truth" for training, which involves manual 

annotation of images to ensure the algorithms can detect 

and respond correctly. Developing robust data archives for 

AI is crucial but challenging. Investments in infrastructure 

can support AI deployment, whether products are vendor-

specific or need local configuration. 

 

The Value Question 

Investing in AI for medical departments involves 

substantial costs, including hardware, software, and expert 

personnel. While such investments align with the goals of 

modern healthcare, their programmatic justification 

requires careful assessment. In clinical radiology, AI can 

significantly impact the diagnostic imaging cycle by aiding 

in the decision-making process for imaging procedures and 

enhancing image interpretation. AI algorithms can 

improve diagnostic accuracy by identifying critical 

findings earlier and more accurately than traditional 

methods. For instance, a 5% increase in sensitivity from an 

AI system could lead to earlier detection of diseases like 

breast cancer, which can profoundly affect patient 

outcomes. However, integrating AI into existing systems 

presents challenges, such as ensuring compatibility with 

current workflows and maintaining high-quality data. 

Ultimately, the decision to implement AI should weigh the 

potential benefits—such as improved diagnostic precision 

and faster detection—against the costs and logistical 

complexities of integration. As AI technology evolves and 

becomes more cost-effective, its adoption in medical 

diagnostics is likely to offer greater value. 

 

A Perspective on the Future 

The impact of AI on radiology and nuclear medicine is 

rapidly evolving due to continuous technological 

advancements, which enhance performance and expand 

applications. This dynamic landscape requires ongoing 

evaluation of AI’s value to determine when and how to 

invest. While AI is anticipated to play a crucial role in the 

future of medicine, its implementation will differ across 

facilities. 

To imagine AI’s transformative potential, consider a 

scenario where an AI achieves flawless accuracy. Picture 

an AI capable of analyzing every pixel of contrast-

enhanced CT scans of the chest, abdomen, and pelvis with 

precision beyond human capabilities, while integrating this 

data with all available demographic and clinical 

information. Such an AI could accurately predict hidden 

malignancies, assess coronary risk, and recommend 

dietary changes. 

Although these scenarios might seem improbable with 

current technology, it would be premature to dismiss them 

entirely. The true potential of AI will become clearer as 

technology progresses and more data is accumulated. 

Currently, decisions on adopting AI involve balancing its 

benefits against existing programmatic considerations. In 

some instances, early adoption may be justified by the 

advantages offered, while in others, it might be wiser to 

wait. As AI technology advances, it is likely to be 

integrated into all stages of the radiology and nuclear 

medicine workflow—both visibly and behind the scenes. 

The pace of this integration will depend on ongoing 

technological developments and the tangible benefits AI 

brings to patient care. Institutions must continuously 

assess these factors to make informed decisions about AI 

investment and adoption. 

 

6. DL in Diagnosis and Therapy 

Deep learning (DL) applications in medical imaging are 

commonly cited for tasks such as object detection (e.g., 

locating lesions), object segmentation (e.g., outlining 

lesion contours), and object classification (e.g., 

distinguishing malignant from benign lesions) [21]. These 

tasks are often performed sequentially and serve various 

medical purposes. For instance, object detection is widely 

used in computer-aided diagnosis of mammograms to 

highlight potential tumors, as well as in CT scans of the 

lungs and liver. Object segmentation plays a crucial role in 

automated radiation therapy planning, where it helps 

delineate tumors and organs for targeted treatment and 

dose sparing. Additionally, radiomics relies on lesion 

classification, which depends on prior detection and 

segmentation. 

However, these applications have been specific to 

particular tasks and lack general intelligence. 

Consequently, an AI model trained to segment the spleen 
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may not perform well on the liver without additional 

training. There are also several emerging applications 

being explored: 

 Triaging: Classifying images as normal or 

abnormal and assessing the severity to prioritize 

urgent cases for radiological review. 

 Similar Images: Finding previously encountered 

cases with similar findings to assist in learning 

and interpreting rare or subtle cases. 

 Image Enhancement: Reducing noise in medical 

images (pre- or post-reconstruction) to improve 

image quality and lower radiation doses. 

 Image Reconstruction: Directly transforming 

sinogram data into image space, bypassing 

traditional iterative methods. 

 Attenuation Correction from MRI: Estimating 

CT attenuation correction maps from MRI data in 

PET/MR scans. 

 Multimodal Image Coregistration: Using non-

rigid image warping to address patient 

positioning differences across modalities. 

 Change Detection and Trending: Identifying 

changes between baseline and follow-up studies 

to monitor disease progression or response to 

therapy. 

 Image Acquisition Optimization: Guiding 

technologists in patient positioning, field-of-view 

delineation, and ultrasound probe placement. 

 Quality Assurance: Monitoring machine 

performance to detect anomalies and predict 

maintenance needs. 

 

7. Integrating DL into Clinical Workflow 

Current applications in medical imaging are being 

developed to assist human observers, necessitating 

effective communication through machine-human 

interfaces. While simple tasks like indicating lesion 

presence and organ boundaries allow for human oversight 

to catch errors, more complex applications such as triaging 

or image enhancement might not be easily monitored by 

humans. Therefore, these systems must be thoroughly 

validated for robustness before being used independently 

in clinical settings. The manner in which AI findings are 

presented to radiologists or nuclear medicine physicians 

also requires careful consideration. Immediate AI results 

can introduce bias and lead to overreliance on the 

technology, while delayed results might cause practitioners 

to wait passively for computer-generated information. 

Providing definitive terms (e.g., benign/malignant) can 

obscure the underlying uncertainties, whereas probabilistic 

information, while more accurate, can complicate 

interpretation and reduce the usefulness of the AI 

application. 

An integrated human-machine interface could allow 

human observers to understand how the AI detected 

certain conditions and provide feedback to improve the 

system. This interaction could enhance AI performance 

and expand its applications. However, this approach raises 

regulatory issues: how to manage potential biases if a less 

skilled user provides feedback, and how to oversee 

evolving software versions. One potential solution is to 

transfer data management and training supervision to the 

software manufacturer, though this raises questions about 

data ownership. As AI systems advance, the role of the 

human-machine interface might shift to a simpler function 

of displaying results, potentially resolving some of these 

challenges. 

 

8. AI Application in Medical Imaging 

AI and Design Thinking: The concept of design thinking 

has significantly influenced technology and science over 

the years, and it is now crucial for the successful 

innovation and implementation of AI in medical imaging. 

Design thinking encourages addressing technological 

challenges from a human-centered perspective. In the 

realm of medical innovation, this approach emphasizes 

improving the patient experience and designing 

technology to achieve this goal. Such inquiries require 

diverse perspectives, making the design thinking process 

reliant on collaborative input. While radiologists and 

nuclear medicine physicians play a vital role in AI 

development, incorporating insights from various 

stakeholders—such as referrers, medical radiation 

technologists, administrators, industry professionals, and, 

most importantly, patients—is essential for successful 

outcomes. 

Data Usage and Development: In designing and 

implementing new AI applications, understanding the core 

problem the AI is intended to address is fundamental. 

Thrall et al. distinguish between circumstantial challenges, 

which relate to human and societal behaviors, and intrinsic 

challenges, which involve the use of science and 

technology to devise innovative solutions. Communication 

and mutual understanding among physicians, scientists, 

technologists, industry leaders, and patients are crucial for 

developing effective AI applications. Without early and 

diverse input, AI projects may develop significant flaws, 

such as ethical issues in patient care or non-compliance 

with regulations. Additionally, homogeneous data can lead 

to ineffective solutions if it does not reflect the diversity of 
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the patient population. Ensuring diversity in thought and 

data is critical to the initial development process. 

Successful collaboration among technology developers, 

physicians, and scientists hinges on a shared understanding 

of both business realities and medical optimism. 

Implementation of Ideas: Transitioning AI from the lab 

to clinical practice involves challenges similar to those 

faced by early imaging pioneers. Successful integration of 

AI into patient care requires both clinical professionals 

who understand and can interact with the technology and 

adaptable technology that evolves with clinical needs. 

Incorporating AI basics into medical school and residency 

curricula is vital for preparing future healthcare 

professionals to effectively use new technologies. 

Moreover, AI solutions must be designed to evolve and 

adapt, with performance monitoring, feedback, and quality 

control mechanisms in place. Effective implementation 

relies on clinicians understanding the technology and the 

technology itself being capable of adapting to 

advancements in medical imaging. 

Regulation of Technology: As AI technologies become 

more prevalent in healthcare, regulatory and 

reimbursement issues are emerging. The integration of AI 

into existing billing models is a significant challenge, with 

some believing that AI should be a standard part of care 

rather than a separately billable service. AI's potential to 

reduce service costs might make additional billing 

unnecessary. In the U.S., the FDA has approved a limited 

number of AI-based imaging devices, emphasizing product 

quality, patient safety, and cybersecurity. European 

regulations follow a similar risk-based approach, often 

placing risk assessment responsibilities on technology 

developers or independent certification bodies. 

Ethics in AI: Ethical considerations are crucial when 

using human data for AI applications. Key ethical issues 

include data privacy and confidentiality, informed consent, 

data ownership, objectivity, and inequity. These challenges 

underscore the need for a design thinking approach 

centered around patient interests. Ensuring that AI 

applications maintain patient trust and address ethical 

concerns is essential. As AI becomes more common in 

clinical settings, safeguarding patient data and managing 

liability for potential errors or breaches will be critical. 

The Patient Experience: To truly understand the patient 

experience, involving patients in the design, 

implementation, and decision-making processes is 

essential. Patients value technology that is safe, enhances 

efficiency and care quality, facilitates personal interaction, 

and holds providers and developers accountable. AI 

applications have the potential to improve patient 

interactions by automating tasks, allowing healthcare 

professionals to focus more on meaningful engagement 

with patients. This shift not only enhances patient 

satisfaction but also reaffirms the value of medical 

professionals. By embracing design thinking, addressing 

regulatory and ethical challenges thoughtfully, and 

keeping patients at the core of the process, AI can 

profoundly transform the field of medicine and improve 

global healthcare delivery. 

 

9. Conclusion 

In conclusion, the integration of Artificial Neural 

Networks (ANNs), Machine Learning (ML), Deep 

Learning (DL), and Convolutional Neural Networks 

(CNNs) is revolutionizing medical imaging and diagnostic 

processes. ANNs, with their layered architecture, rely on 

iterative training to refine accuracy through adjusting 

weights based on errors. DL, characterized by its deep 

structures, enhances this capability by managing large 

datasets and abstracting complex features. CNNs, a subset 

of DL, specialize in feature extraction from images 

through convolution and pooling layers, which improve 

the precision of image analysis. Radiomics further 

leverages these technologies to correlate imaging features 

with clinical outcomes, offering promising advancements 

in precision medicine. The shift from scalar to pixel-based 

radiomic features exemplifies the move towards more 

granular data analysis, enhancing the ability to predict 

treatment responses and outcomes. Despite the promising 

capabilities of AI in improving diagnostic accuracy and 

efficiency, challenges such as data quality, integration into 

existing workflows, and ethical considerations remain 

significant. Ensuring robust data management, maintaining 

patient confidentiality, and addressing regulatory concerns 

are crucial for the successful implementation of AI 

technologies. As technology evolves, continued focus on 

patient-centered design and interdisciplinary collaboration 

will be essential for leveraging AI's full potential in 

transforming healthcare. 
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